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This is a set of notes for the number theory unit of Math 55, which are mostly taken
from Niven’s Introduction to the Theory of Numbers. They will be continuously updated
throughout the number theory unit (so there will be quite a lot of loose ends until the unit is
finished and the notes are finalized, and the statements in the notes will not be in the same
order that I discuss them in class).

Please send any questions/comments/corrections to hhao@berkeley.edu.

1 Divisibility

The fundamental object of study of number theory is the integers Z. Therefore we introduce
some basic concepts about the integers that allow us to find deeper relationships among its
elements.

Definition 1.1. Let a and b be integers. If there is an integer x such that b = ax, then b is
divisible by a, or a divides b. We write a|b. If a does not divide b, then we write a - b. In the
case that a, b are positive integers and 0 < a < b, then we say that a is a proper divisor of b.

Example 1.1. Every integer a divides 0. Conversely, 0 does not divide any integer besides
0.

Theorem 1.1. (1) If a|b, then a|bc for any integer c.

(2) If a|b and b|c, then a|c.

(3) If a divides each bi for a finite set of integers b1, . . . , bn, then a divides
∑n

i=1 bixi for any
integers xi.

(4) If a|b and b|a, then a = ±b.

(5) If a|b and a, b are positive integers, then a ≤ b.

(6) If m 6= 0, then a|b if and only if ma|mb.

Proof. We prove (4), and leave the rest as exercises. If a|b and b|a, then a = 0 if and only
if b = 0, in which case the proposition is true. So suppose a and b are nonzero, and there
exist integers x, y such that ax = b and by = a. Then axy = a, and since a 6= 0, we
have 1 = xy. Then x and y are either both positive or both negative. Assuming that they
are both positive, then because 1 is the smallest positive integer (an axiom of N), we have
x ≥ 1, y ≥ 1, so xy ≥ 1 with equality if and only if x = 1 and y = 1. Therefore a = b. In
the other case when x and y are both negative, the same argument shows −x = −y = 1, so
a = −b.
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The next statement is the division algorithm, which proves that division in Z is possible
and uniquely defined, up to some conditions.

Theorem 1.2 (Division algorithm). Let a and b be integers, where a > 0. Then there exist
unique integers q (the quotient) and r (the remainder) such that b = aq + r and 0 ≤ r < a.
If a - b, then r 6= 0.

Remark 1.1. The class textbook defines b div a to be the quotient q, and b mod a to be
the remainder r. We will not use this notation in this class.

Proof. Consider the set S of all nonnegative integers of the form b−ka for some k ∈ Z. This
set is nonempty (why?), so we invoke the well-ordering property of the nonnegative integers
N∪{0}, and pick the smallest integer r from S. Then if r = b−aq, we must have 0 ≤ r < a,
as otherwise r − a = b− a(q + 1) is also in S but strictly less than r, contradicting how we
chose r. Therefore the pair (q, r) satisfy the conditions of the theorem.

We now prove uniqueness of q and r. Suppose there is another pair (q′, r′) satisfying the
same conditions. We claim that r = r′. If not, then WLOG r < r′, so 0 < r′ − r < a, and
then r′ − r = (b− aq′)− (b− aq) = a(q − q′). So by definition, a|(r′ − r), a contradiction to
item (5) of Theorem 1.1. Therefore r′ = r, and from this it follows that q = q′.

The last statement of the theorem is left as an exercise.

This theorem probably expresses a fact you already knew: you can always divide an
integer by a positive integer a, and obtain a positive remainder strictly smaller than a. But
it is useful to record this result rigorously, because we will need it very soon.

Example 1.2. The quotient and remainder then −13 is divided by 4 are q = −4 and r = 3.

Definition 1.2. We say a is a common divisor of integers b and c if a|b and a|c. If at least
one of b and c is not zero (say, b 6= 0), then b only has finitely many divisors, so a fortiori
there are only finitely many common divisors of b and c. We say the greatest integer among
the set of common divisors of b and c is the greatest common divisor (gcd) of b and c, denoted
gcd(b, c) or (b, c).

We can similarly extend this notion to any finite set b1, . . . , bn of integers, not all 0. We
write their (mutual) gcd as (b1, b2, . . . , bn). Also, note that by definition, the gcd of any two
integers is positive.

Example 1.3. We have gcd(6, 9) = 3, gcd(−4,−8) = 4, and gcd(6, 10, 15) = 1. Also,
gcd(a, 0) = a for any positive integer a.

The following result relates the gcd, which is a notion stemming from divisibility, to linear
expressions with integer coefficients.
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Theorem 1.3 (Bezout’s Lemma). Let g = (b, c). Then there exist integers x0, y0 such that
g = bx0 + cy0.

Proof. Consider the set S = {bx + cy : x, y ∈ Z} of all possible integer linear combinations
of x and y. This set includes some positive integers, so choose x0, y0 such that bx0 + cy0 = l
is the smallest positive integer in S. We claim l|b. If not, then there exist unique integers q
and r such that b = lq + r and 0 < r < l by Theorem 1.2. Then

r = b− lq = b− q(bx0 + cy0) = b(1− qx0) + c(−qy0) ∈ S

contradicting r being the smallest positive integer in S. Therefore we must have l|b, and
similar l|c. Now, since g is the greatest common divisor of b and c, we may write b = gB,
c = gC, and so l = bx0+cy0 = g(Bx0+Cy0). Therefore g|l, but g and l are positive integers,
so g ≤ l. By maximality of g, we must have g = l.

Notice that the proof of this theorem gives an alternate description of gcd(b, c): it is the
least positive integer than can be written as an integral linear combination of b and c. In
particular:

Corollary 1.1. The gcd of b, c is 1 if and only if there are integers x, y such that bx+cy = 1.

Proof. The “only if” statement is immediate. For the “if” statement, if there are integers
such that bx+cy = 1, then the least positive integer that can be written as an integral linear
combination of b and c must be 1 (as any positive integer is at least 1), so (b, c) = 1.

This case is so special that it deserves a name:

Definition 1.3. We say that two integers a, b are relatively prime, or coprime, if (a, b) = 1.
More generally, a list b1, . . . , bn of integers is coprime if (b1, . . . , bn) = 1. We say such a list
is pairwise coprime if (bi, bj) = 1 for all i 6= j.

As we will see later on, the intuition for coprime integers is that divisibility conditions
with respect to those integers “behave independently,” precisely because those integers share
no nontrivial factors in common.

Example 1.4. The integers 6 and 35 are coprime. The set of integers {6, 10, 15} is coprime,
but not pairwise coprime, as (6, 10) = 2, (6, 15) = 3, (10, 15) = 5. In particular, a set of
integers being pairwise coprime implies they are coprime, but not the other way around.

Corollary 1.2. The gcd g of integers b, c is the unique positive common divisor of b that is
divisible by every common divisor.

Proof. If d is any common divisor of b and c, then by (3) of Theorem 1.1 and Theorem
1.3, we conclude that d|g. To show uniqueness of g, if another positive common divisor g′

satisfies this property, then we have g|g′ and g′|g, so g = g′ as both are positive (see (4) of
Theorem 1.1).
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Theorem 1.3 can be generalized to the gcd of an arbitrarily large list b1, . . . , bn of positive
integers, but this is not necessary for any part of our discussion, so we omit this. Instead,
we prove a bunch of properties about the gcd.

Proposition 1.1. For any m ∈ N, (ma,mb) = m(a, b).

Proof. We know that (ma,mb) is the least positive value of max + mby as x, y range over
all integers, and this least value is precisely m ·min{ax+ by : ax+ by > 0, x, y ∈ Z}, which
is equal to m · (a, b).

Proposition 1.2. If d|a and d|b with d a positive integer, then (a/d, b/d) = (a, b)/d. If
(a, b) = g, then (a/g, b/g) = 1.

Proof. The first assertion follows from Proposition 1.1 when we replace m, a, and b by d,
a/d, and b/d. The second assertion follows from the first: it is the special case d = (a, b).

Proposition 1.3. If (a,m) = (b,m) = 1, then (ab,m) = 1.

Proof. By Theorem 1.3, there are integers x, y, x′, y′ such that ax+my = 1 and bx′+my′ = 1.
Then axbx′ = (1 −my)(1 −my′), and the right-hand side is of the form 1 −my′′ for some
integer y′′. Therefore abxx′ +my′′ = 1, so (ab,m) = 1 by Corollary 1.1.

Proposition 1.4 (Euclid’s Lemma). If c|ab and (b, c) = 1, then c|a.

Proof. By Proposition 1.1, we have (ab, ac) = a(b, c) = a. Since c|ab by assumption, and we
certainly have c|ac, we conclude that c|a, since the gcd a of ab and ac is divisible by all other
common divisors by Corollary 1.2.

We now come to the problem of actually computing the gcd. Note that we do not have
the tool of unique factorization yet, so that cannot be used, even though we are able to
prove the relevant theorem now. Moreover, the actual computation of the factorization of an
integer is difficult (this is the assumption on which almost all of modern cryptography rests!),
and so any method using prime factorization to calculate gcd is not feasible. Moreover, it
is not possible to directly use the result from the proof of Theorem 1.3, that gcd(b, c) is the
smallest positive integer that is an integer linear combination of b and c: this would require
some way of picking the smallest element out of an infinite set (that is most likely not in
increasing order). Fortunately, the next two results allow us to use the division algorithm to
quickly compute the gcd (which is actually what computers use, especially for small inputs!).

Theorem 1.4. For any integer x, (a, b) = (b, a) = (a,−b) = (a, b+ ax).

Proof. The first two equalities are clear.
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Write d = (a, b) and g = (a, b + ax). By Theorem 1.3, find integers x0, y0 such that
d = ax0 + by0. Then we have

d = a(x0 − xy0) + (b+ ax)y0,

and since g = (a, b+ ax) divides both a and b+ ax, we also have g|d. Conversely, since d|a
and d|b, we have d|(b+ ax), and from Corollary 1.2, we conclude that d|g since g is divisible
by every common divisor of a and b + ax. Hence d = ±g, and since both are positive by
definition of gcd, we must have d = g.

Before we give the formal Euclidean algorithm, let’s first do a numerical example. Cp-
nsider b = 963, c = 657. We can divide b by c as normal: we get a quotient q = 1 and
remainder r = 306. Then (b, c) = (b− cq, c) by Theorem 1.4, so

(963, 657) = (963− 1 · 657, 657) = (306, 657) = (657, 306).

So we have reduced the calculation to a pair of smaller integers: we replaced (b, c) with
(c, r), where c ≤ b and r < c. This is a great achievement, because upon repeating the same
procedure, we can reduce the calculation to an even smaller pair of integers, and so on!

So upon dividing 657 by 306, we get q = 2 and r = 45, so that

(657, 306) = (657− 2 · 306, 306) = (306, 45).

Continuing in this fashion, we end up getting

(963, 657) = (657, 306) = (306, 45) = (45, 36) = (36, 9) = (9, 0) = 9.

This process can be reversed in order to write 9 as an integer linear combination of 963 and
657. Using the quotients and remainders given by the division algorithm, we have

306 = 963− 657,

45 = 657− 2 · 306 = 657− 2 · (963− 657)

= 3 · 657− 2 · 963,

36 = 306− 6 · 45 = (963− 657)− 6 · (3 · 657− 2 · 963)

= 13 · 963− 19 · 657,

9 = 45− 36 = (3 · 657− 2 · 963)− (13 · 963− 19 · 657)

= 22 · 657− 15 · 963.

Let us generalize this procedure to arbitrary integers b, c. If c = 0, then we know that
(b, 0) = |b|. Also, because (b, c) = (b,−c), we may assume that c > 0.
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Theorem 1.5 (Euclidean algorithm). Given integers b, c with c positive, we may repeat the
division algorithm, Theorem 1.2, to obtain a finite series of equations

b = cq1 + r1, 0 < r1 < c,

c = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,

. . .

rj−2 = rj−1qj + rj, 0 < rj < rj−1,

rj−1 = rjqj+1.

Then (b, c) = rj, where rj is the last nonzero remainder in the division process. We may find
x, y ∈ Z such that (b, c) = bx+ cy by writing each ri as a linear combination of b and c, and
“back-substituting.”

Proof. Note that at each step, the kth remainder rk is a positive number strictly less than
rk−1 (set r0 to be the given integer c > 0 for convenience), and there are only finitely many
nonnegative integers less than c. So at some step l, the lth remainder rl must be 0 (we
cannot have an infinite chain of decreasing remainders r0 > r1 > r2 > . . . > 0), in which
case the algorithm terminates immediately.

To show that rj, the last nonzero remainder in the division process, is equal to (b, c), we
compute

(b, c) = (b− cq1, c) = (c, r1) = (c− r1q2, r1) = (r1, r2) = (r2, r1 − r2q3)

= (r2, r3) = . . . = (rj−1, rj) = (rj, 0) = rj.

To be rigorous, the . . . requires some sort of inductive argument, but the idea is clear enough.
For the last part, we note that r1 is an integer linear combination of b and c, by con-

struction. Then r2, being an integer linear combination of c and r1, is an integer linear
combination of b and c via substitution for r1. In general, ri is an integer linear combination
of ri−1 and ri−2, so if the latter two are integer linear combinations of b and c, then so is ri.
So via this recursive/inductive back-substitution procedure, rj = (b, c) can be written as an
integer linear combination of b and c, derived from the series of equations obtained from the
division algorithm.

Exercise 1.1. Use the Euclidean algorithm to find (42823, 6409), and write this gcd g
as an integer linear combination of 42823 and 6409 (you should get g = 17 and 17 =
−22 · 42823 + 147 · 6409).
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2 Modular Arithmetic

The notion of divisibility allows us to introduce the various useful notion of modular arith-
metic. As a motivating example, consider the following question:

Question 2.1. Do there exist positive integers x, y, z such that 3x+5·6y+1 = z(z+1)(z+2)?

After a moment’s reflection, we see that the answer is no, because the left-hand side is
not divisible by 3 (why?), while the right-hand side is divisible by 3 (because one of z, z+ 1,
or z + 2 is always divisible by 3, for any integer z). This is an example of the power of
modular arithmetic: we focus on a single divisibility condition with respect to 3, stripping
away extraneous details from the equation.

Definition 2.1. If a and b are integers and m is a positive integer, we say that a is equivalent
to b modulo (mod) m, written a ≡ b mod m, if m|(a − b). We sometimes also say that b is
a residue of a mod m (this will be made more clear below). In other words, a ≡ b mod m
if and only if there is an integer k such that a = b + mk. If m - (a − b), then we write
a 6≡ b mod m.

Some basic facts:

Theorem 2.1. (1) The following are equivalent: a ≡ b mod m, b ≡ a mod m, a − b ≡
0 mod m, a and b leave the same remainder upon division by m.

(2) If a ≡ b mod m and b ≡ c mod m, then a ≡ c mod m.

(3) If a ≡ b mod m and c ≡ d mod m, then a+ b ≡ c+ d mod m.

(4) If a ≡ b mod m and c ≡ d mod m, then ab ≡ cd mod m.

(5) If a ≡ b mod m and d|m with d > 0, then a ≡ b mod d.

(6) If a ≡ b mod m, then ac ≡ bc mod mc for any positive integer c.

Proof. We will prove (4), and leave the rest as exercises. By assumption, there are integers
k, l such that a = b+mk, c = d+ml. Then ac = (b+mk)(d+ml) = bd+m(kd+ bl+ kml),
so ac ≡ bd mod m.

Example 2.1. If m = 5, then 7 ≡ 2 mod 5 and 11 ≡ 1 mod 5, so 18 ≡ 3 mod 5 and
77 ≡ 2 mod 5.

Theorem 2.2. Let f(x) = cnx
n+cn−1x

n−1+. . .+c0 be a polynomial with integral coefficients
ci. If a ≡ b mod m, then f(a) ≡ f(b) mod m.
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Proof. By item (4) of Theorem 2.1, we have a2 ≡ b2 mod m, a3 ≡ b3 mod m, and in general
ak ≡ bk mod m for all k ≥ 0. Then cka

k ≡ ckb
k mod m, and hence

cna
n + cn−1a

n−1 + . . .+ c0 ≡ cnb
n + cn−1b

n−1 + . . .+ c0 mod m,

by various applications of Theorem 2.1.

A slight generalization of the above argument is used to derive the following:

Theorem 2.3. Assume the same hypotheses as in Theorem 2.2, but now consider another
polynomial g(x) = dnx

n+dn−1x
n−1+. . .+d0 with integer coefficients, such that ci ≡ di mod m

for all 0 ≤ i ≤ n. Show that f(a) ≡ g(b) mod m.

Example 2.2. We claim that if a = 610001, then f(a) for f(x) = 8x2 − 5x + 15 is divisible
by 7. Indeed, notice that 610001 ≡ (−1)10001 = −1 mod 7, and if b = −1 and g(x) =
x2 + 2x + 1 = (x + 1)2, then a, b, f(x), and g(x) satisfy the hypotheses of Theorem 2.3.
Hence f(a) ≡ g(b) mod 7, and g(b) = 0.

Example 2.3. We show that 41 divides 220 − 1. Since 25 = 32 ≡ −9 mod 41, we have
220 = (25)4 ≡ (−9)4 mod 41. Since (−9)4 = 81 · 81 and 81 = 2 · 42 − 1, we conclude that
220 ≡ 81 · 81 ≡ (−1) · (−1) = 1 mod 41. Therefore 220 − 1 ≡ 1− 1 = 0 mod 41.

You will see more examples of this type of problem on your homework.
We make the following observation:

Proposition 2.1. Let m be a positive integer. Then every integer is congruent mod m to
exactly one of the integers 0, 1, . . . ,m− 1. Moreover, no two of these integers are congruent
mod m.

This explains the use of the word “residue” from Definition 2.1: if a is an integer, and
k ∈ {0, 1 . . . ,m − 1} is the unique element such that a ≡ k mod m, then k is the residue
(remainder) upon dividing a by m.

This construction is so important that it deserves a name.

Definition 2.2. A set {x1, . . . , xr} is called a complete residue system mod m if, for every
integer y, there is exactly one xj such that y ≡ xj mod m. The elements of a complete
residue system mod m are called residues, or residue classes, mod m.

So, the set {0, 1 . . . ,m − 1} is a complete residue system. We call this the canonical
residue system mod m (this is my own terminology and is not standard).

Example 2.4. As another example, the set {1 . . . ,m− 1,m} is a complete residue system.

Exercise 2.1. Prove that every complete residue system mod m consists of exactly m
elements. [Hint: use the canonical residue system.]
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We will now use the canonical residue system mod m, along with items (3) and (4)
of Theorem 2.1, to construct a “system” in which we can do many the basic arithmetic
operations. In later algebra courses, you will learn that this “system” is really an example
of an (abelian) group and a commutative ring.

Definition 2.3. We define Z/mZ, as a set, to be the canonical residue system mod m. We
define addition mod m in Z/mZ as follows: given elements a, b ∈ Z/mZ, we define a+m b to
be the unique element c in Z/mZ such that a + b ≡ c mod m (notice that the addition on
the left-hand side is addition of integers). We define multiplication mod m, a ·m b, similarly.

Remark 2.1. The notations +m and ·m are nonstandard, but are useful in the beginning.
Later on, I may drop the subscripts if the modulus m is clear.

Example 2.5. In Z/1Z, the only element is 0.

Example 2.6. Consider m = 6. Then in Z/6Z, 3 +6 4 = 1 mod 6 (we write “mod 6” to
distinguish our operation from the usual addition of integers) and 3 ·6 5 = 3 mod 6.

Let’s see how Z/mZ is similar to and is different from the integers Z. More or less by
construction, addition and multiplication in Z/mZ are associative and commutative, and
multiplication distributes over addition (although these do require short proofs). There is
an additive identity in Z/mZ: it is 0, because for any a ∈ Z/mZ, 0 + a = a in the integers,
and a is an element of the canonical residue system by definition, so 0 +m a = a. Similarly,
there is an multiplicative identity in Z/mZ: it is 1. We also have additive inverses (and
therefore subtraction) in Z/mZ, where the inverse −a of a ∈ Z/mZ is defined as the unique
element in the canonical residue system congruent mod m to the integer 0− a (e.g. −4 = 2
in Z/6Z).

On the other hand, Z/mZ has a few key differences. First, we might not have the “zero
product property.” In Z, we know that if ab = 0, then either a = 0 or b = 0. But this might
not be true in certain Z/mZ: if m = 6, for instance, then 2 ·6 3 = 0, but neither 2 nor 3
equal 0 in Z/6Z. Similarly, we have a “cancellation property” in Z: if ab = ac with a 6= 0,
then b = c. But this can fail in certain Z/mZ (can you find such an example when m = 6?).

Somewhat conversely, we know that not all nonzero integers have multiplicative inverses:
in fact, only 1 and −1 do. On the other hand, there are certain m for which every nonzero
element in Z/mZ has a multiplicative inverse. For instance, in Z/7Z, we have 1 ·7 1 = 1,
2·4 = 1, 3 ·7 5 = 1, and 6 ·7 6 = 1, so every nonzero element in Z/7Z has a multiplicative
inverse!1 The great theorem is this:

Theorem 2.4. For m ≥ 2 (m = 1 is excluded for technical reasons), the following are
equivalent:

1A set in which we have addition and multiplication satisfying the usual properties, and in which every
nonzero element has a multiplicative inverse, is called a field.
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(1) The “system of modular arithmetic” Z/mZ has the “zero product property.”

(2) The “system of modular arithmetic” Z/mZ has the “field property”: every nonzero
element has a multiplicative inverse.

(3) m is a prime number (to be defined later).

Remark 2.2. Notice that we have to take care when discussing modular arithmetic, because
although we would like to treat, say, “2 mod 3” as if it were a number, we cannot quite do
so yet. For instance, it makes no sense to say “2 mod 3 is even”, because 5 ≡ 2 mod 3, and
5 is not even. For a similar reason, it does not make sense to say “3 mod 5 times 4 mod 5
equals 12” (why?). In reality, “2 mod 3” is really a set : it is the set {. . . ,−4,−1, 2, 5, . . .}
containing all integers that leave a remainder of 2 upon division by 3. In an abstract algebra
class, you will learn about, quotient groups (of which Z/mZ is an example) and cosets, which
allow you to treat a set of elements as a single element in its own right.

3 Prime Numbers

In this section we introduce the fundamental building blocks of the integers: the prime
numbers. They will be the integers that are “indivisible” into others.

Definition 3.1. A positive integer p > 1 is a prime number if there is no divisor d of p
satisfying 1 < d < p. In other words, the only positive divisors of p are 1 and p itself. If an
integer a > 1 is not prime, then it is composite.

Note that we deliberately exclude 1 from being a prime number. This is for many very
good reasons, and we will touch on some of them later.

Theorem 3.1 (Fundamental Theorem of Arithmetic: Existence). Every positive integer
n > 1 can be expressed as a product of primes, perhaps trivially.

Proof. If n is a prime, then it is already expressed as a “trivial product” with only one
factor. If not, then n must be able to be factored into a product n1n2, where 1 < n1, n2 < n.
Repeating this process with n1, n2 (really an inductive argument), we can continue the
factorization: if n1 is prime, we stop, and if n1 is not prime, then we write n1 = n3n4 with
1 < n3, n4 < n1. This process must stop eventually because the factors get strictly smaller
at every step, yet are integers strictly greater than 1. Therefore we may write n as a product
of primes n = pa11 p

a2
2 · . . . · parr , where the pi are distinct primes and the ai are positive

integers.

Notice that this does not prove that the factorization is unique. Indeed, this is not
immediate and must be proved. As a cautionary example of what could happen, in 1847,
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the French mathematician Lamé announced a proof of Fermat’s Last Theorem, perhaps the
most important open problem of number theory from the 17th to the 20th century. In the
proof, Lamé assumed without proof a unique factorization property in a different “system
of arithmetic” that he had constructed, but the German mathematician Kummer showed
this to be false. This eventually led to the creation of “ideal numbers” (the precursor to the
modern abstract algebraic notion of “ideal”) by Kummer and Dedekind, which allows one
to “save unique factorization” in a way.

For hand-calculation purposes, the following result is useful:

Exercise 3.1. If n is composite, then n has a prime divisor less than or equal to
√
n.

Example 3.1. To verify that 101 is prime, we only need to show that it is not divisible by
2, 3, 5, or 7, because those are the only primes less than or equal to

√
101 < 11.

To prove uniqueness of prime factorization in Z, the following result (really a corollary
of an earlier result) is useful.

Proposition 3.1. If p|ab, then either p|a or p|b. In general, if p|a1a2 · . . . · an, then p divides
at least one of the ai.

Proof. If p - a, then (p, a) = 1 since the only positive divisors of p are 1 and p. So by
Proposition 1.4, p|b. The second statement follows by induction: if p divides a1a2 · . . . · an =
a1(a2 · . . . · an), then it either divides a1 or a2 · . . . · an. If it divides a1, then we are done, and
if it divides a2 · . . . · an, then it divides either a2 or a3 · . . . · an, and so on.

Theorem 3.2 (Fundamental Theorem of Arithmetic: Uniqueness). Every positive integer
n > 1 can be expressed as a product of primes, which is unique up to reordering the prime
factors of n.

Proof. Suppose n has two prime factorizations

n = p1p2 · . . . · pr = q1q2 · . . . · qs,

where without loss of generality, r ≤ s. Then p1|q1q2 . . . qs, so p1 divides one of the qi by
Proposition 3.1. Renaming the qi if necessary, suppose that qi = q1. Then p1|q1, but q1 is
prime, so the only positive factors it could have are 1 and itself. Since p1 > 1 by definition
of prime, we conclude that p1 = q1, so we can cancel them and obtain the equality

p2 · . . . · pr = q2 · . . . · qs.

Continuing in this fashion with p2, p3, . . ., and using the assumption that r ≤ s, we arrive at

1 = qr+1 · . . . · qs,
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where the product on the right-hand side is empty (i.e. equals 1) if r = s. This must be the
case, since the only positive integer dividing 1 is 1 itself, by (5) of Theorem 1.1. It follows
that, in the original equality

p1p2 · . . . · pr = q1q2 · . . . · qr,

we have pi = qi for all i after possibly having reordered the qi’s.

Corollary 3.1. Every integer n 6= 0, 1,−1 can be expressed as a product of primes up to
sign, and this product is unique up to reordering the prime factors of n.

Proof. If n < −1, then apply Theorem 3.2 to −n > 1, which is uniquely a product of primes.
In particular, the (positive) prime factors of n multiply to −n.

As an application of the (existence part of the) fundamental theorem of arithmetic:

Theorem 3.3 (Euclid). There are infinitely many prime numbers.

Proof. If not, then suppose there are only finitely many: p1, . . . , pr (there is at least 1 prime:
p1 = 2). Consider n = 1 + p1p2 · . . . · pr. Then none of the pi divide n, contradicting any
n > 1 having a prime factor.

Be aware of the common misconception that this proof implies that the product of the
first r primes, plus 1, is prime. This is not true: 1 + 2 · 3 · 5 · 7 · 11 · 13 = 59 · 509.

Let’s see how we may exploit the uniqueness aspect of the fundamental theorem of
arithmetic. By the existence aspect, every integer a ≥ 1 may be written in the shorthand
form

a =
∏
p

pα(p),

where the product ranges over all primes p (infinitely many!), each α(p) is a nonnegative
integer, and α(p) = 0 for all large enough primes p. Note that if a = 1, then α(p) = 0 for all
p.

Example 3.2. We have 140 =
∏

p p
α(p), where α(2) = 2, α(3) = 0, α(5) = 1, α(7) = 1, and

α(p) = 0 for all p ≥ 11.

Now, if a =
∏

p p
α(p), b =

∏
p p

β(p), and c =
∏

p p
γ(p), and we moreover have ab = c, then

the uniqueness of the factorization implies that α(p) + β(p) = γ(p) for every prime p. In
particular, if a|c, then α(p) ≤ γ(p) for all p. Conversely, if α(p) ≤ γ(p) for all p, then you can
show that a|c. Therefore divisibility relations may be expressed in terms of the exponents
appearing in the unique prime factorizations, and in fact we have:

Proposition 3.2. If a =
∏

p p
α(p) and b =

∏
p p

β(p), then (a, b) =
∏

p p
min(α(p),β(p)). In

partricular, (a, b) = 1 if and only if a and b have no common prime factor p.
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The proof is left as exercise.
We could also have defined:

Definition 3.2. Given nonzero integers a and b, the least common multiple of a and b,
denoted lcm(a, b), is the smallest positive integer in the set S = {s > 0 : a|s, b|s}. Note that
S is nonempty because it contains |ab|.

Then given positive integers a =
∏

p p
α(p) and b =

∏
p p

β(p), we conclude that

lcm(a, b) =
∏
p

pmax(α(p),β(p)),

and moreover
gcd(a, b)lcm(a, b) = ab.

3.1 Distribution of Primes in the Integers

This informal section gives some discussion about the distribution of primes in the integers,
since some of the material appears in our (Rosen’s) textbook.

The distribution of primes is more or less the central question in the field of analytic
number theory. In some sense, there are simultaneously “a lot of primes” and “not a lot of
primes.” For instance:

Exercise 3.2. Fix a positive integer k. Then there exist k consecutive positive integers,
none of which are prime. [Hint: think about what numbers divide (k + 1)!.]

On the other hand, one of Euler’s most famous results was that there are “enough” primes
for the sum of the reciprocals of primes to diverge. More precisely, it can be proved that

Theorem 3.4. For every real number y ≥ 2,∑
p≤y

1

p
> log log y − 1.

In particular, letting y →∞ shows that∑
p a prime

1

p
=∞.

Remark 3.1. Note that there do exist infinite sets of positive integers, where the sum of
the reciprocals of all elements in that set converges. For example, S = {20, 21, 22, . . .}.

Remark 3.2. Theorem 3.4 gives another, non-circular, proof of the infinitude of primes.
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Two much deeper results regarding the distribution of primes are as follows. First, one
might be interested in primes that are contained in certain sequences, such as the sequence
of positive integers congruent to a mod m for some positive integers a,m. Assuming that
(a,m) = 1 (this is certainly necessary—do you see why?), then the following theorem holds:

Theorem 3.5 (Dirichlet’s Theorem on Arithmetic Progressions). Given positive integers
(a,m) such that (a,m) = 1, there are infinitely many prime numbers congruent to a mod m.

For certain values of a and m, such as a = 3 and m = 4, the corersponding special case
of this theorem can be proved using a method very similar to that of Euclid’s Theorem 3.3.
The case when a = 1 is slightly harder, but can be proved along the same lines using special
polynomials called cyclotomic polynomials. But the general proof requires some complex-
analytic machinery, which is well beyond the scope of this course.

Even more difficult is the celebrated prime number theorem:

Theorem 3.6 (Prime Number Theorem). For a real number x > 1, let π(x) be the number
of primes p less than or equal to x. Then

lim
x→∞

π(x)

x/ log(x)
= 1.

That is, the number of primes less than or equal to a real number x “grows asymptotically”
according to the function x/ log(x).

The proof requires many subtle complex-analytic estimates. On the other hand, here
is some numerical data (taken from our textbook) that showcases the plausibility of the
theorem.
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Of course, there is a lot we don’t know about the distribution of primes. Two of the most
famous open problems in this area are the twin prime conjecture and the Riemann hypothesis
(for which a solution comes with a 1 million dollar prize), and I’m happy to explain more
about these if asked to.

4 The structure of Z/mZ

4.1 The multiplicative structure

Let m ≥ 2 be an integer; we will keep this running assumption for this entire section. Recall
that we defined Z/mZ as a set to be the canonical residue system mod m. Therefore if a is
any integer, then there is a unique element r ∈ Z/mZ such that a ≡ r mod m; r is just the
remainder of a upon division by m. Let’s call r the reduction of a mod m (we will omit the
“mod m” if m is clear from context). Since a = qm+ r for some integer q, Theorem 1.4 tells
us that (a,m) = (a− qm,m) = (r,m). Therefore gcd properties of a with respect to m, are
the same as gcd properties of its reduction with respect to m (e.g. statements such as “if a
is an integer coprime to m, then the reduction of a is also coprime to m”).

This fact allows us to translate many statements regarding modular arithmetic mod m
between the integers Z and Z/mZ. Each proposition that follows has a version pertaining to
all integers, and a version pertaining to elements of Z/mZ, and they express the exact same
mathematical content. At the start, we will try to state the proposition in both settings, but
later on as this gets tedious, the reader should be able to supply the various “translations”
themselves.

Recall that we have defined operations +m and ×m on Z/mZ, which are just “modulo
m versions” of the usual operations on integers (later on, we will drop the subscript m when
the context that we are working in Z/mZ is clear). These operations satisfy many of the
same properties as our regular + and × operations on the integers. We will now discuss a
property that almost all of the integers certainly do not have: the existence of multiplicative
inverses. This turns out to be the key to unlocking the properties of Z/mZ.

Proposition 4.1. Let a be an integer coprime to m. Then there is a unique multiplicative
inverse of a mod m: i.e. there is an integer b such that ab ≡ 1 mod m, and any other integer
b′ also satisfying ab′ ≡ 1 mod m must be congruent to b mod m. Translation in Z/mZ: if
r ∈ Z/mZ is coprime to m, then there is a unique s ∈ Z/mZ such that r ×m s = 1.

Proof. By Theorem 1.3, there exist integers x, y such that ax+my = 1. Then ax ≡ 1 mod m,
so x is a multiplicative inverse of a mod m. To show uniqueness, suppose an integer x′ is
another multiplicative inverse of a mod m, so ax′ ≡ 1 mod m. Then x′ax = (x′a)x ≡
x mod m, but also x′ax = x′(ax) ≡ x′ mod m, so that x ≡ x′ mod m.

Translation in Z/mZ: let x be an integer such that rx ≡ 1 mod m. Then if s is the
reduction of x mod m, then r ×m s = 1, because rs ≡ rx ≡ 1 mod m. s is unique, because
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if s′ also has r ×m s′ = 1, then rs′ ≡ 1 mod m, so by what we proved above, x ≡ s′ mod m.
Because s is the unique integer in [0,m−1] that is congruent to x mod m, we have s = s′.

Notice how the proof of the “translation” didn’t really involve any new ideas; it was just
a reinterpretation of what we knew to be true in the integer setting to the “language” of
Z/mZ. On the other hand, the translation in Z/mZ allowed us a slightly cleaner version
of our statement: instead of “unique integer up to congruence mod p”, we can simply say
“unique element in Z/mZ.” This uniqueness allows us to make the following definition:

Definition 4.1. Suppose r ∈ Z/mZ is coprime to m. Then the unique multiplicative inverse
of r is denoted r−1, and we call r an invertible element or a unit (in Z/mZ). If r is a unit,
and k < 0 is a negative integer, then we define rk as (r−1)−k (which makes sense as −k is
positive, and we already know how to take an element to a positive power).

One can check that the usual exponent properties hold, even with negative exponents.
For instance, if a and b are integers (perhaps negative), and r ∈ Z/mZ is invertible, then
rab = (ra)b = (rb)a. In particular, (r−1)−1 = r. As another example, a product of invertible
elements r, s ∈ Z/mZ is invertible, since (rs)−1 = r−1 ×m s−1.

Corollary 4.1. If p is a prime and p - a, then a has a (unique) multiplicative inverse mod p.
Translation in Z/pZ: if r is a nonzero element in Z/pZ, then r has a unique multiplicative
inverse r−1 in Z/pZ.

Proof. Indeed, if p is not a prime factor of a, then p and a share no prime factors in common,
so (a, p) = 1.

Corollary 4.2. We can now prove Theorem 2.4: The following are equivalent:

(1) The “system of modular arithmetic” Z/mZ has the “zero product property”: if a, b ∈
Z/mZ satisfy ab = 0, then either a = 0 or b = 0.

(2) The “system of modular arithmetic” Z/mZ has the “field property”: every nonzero
element has a unique multiplicative inverse.

(3) m is a prime number.

Proof. We first show that (1) implies (3). Assume (1), and suppose for contradiction that
m is not prime. Then because m ≥ 2 (running assumption), m is a product of integers kl,
where 1 < k, l < m. Then k and l are nonzero elements in Z/mZ and k ×m l = 0 in Z/mZ,
contradicting the assumption (1). Therefore m must be prime.

Next, that (3) implies (2) is Corollary 4.1. Finally, to show (2) implies (1), suppose
a ×m b = 0 where a, b are elements in Z/mZ. If a = 0, then we are done. If not, then by
assumption a has a multiplicative inverse a−1, so 0 = a−1×m 0 = a−1×ma×m b = 1×m b = b.
Therefore b = 0, so at least one of a or b is 0.
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Example 4.1. Using Corollary 4.2, we can make the following observation. Suppose a, b, c ∈
Z/mZ are such that ab = ac and (a,m) = 1. Then we can conclude that b = c by multiplying
by a−1 on both sides of the preceding equality. Note that this could be false if we don’t assume
that a is invertible in Z/mZ: for instance, 3×6 1 = 3×6 3, and 3 is not invertible in Z/6Z
as (3, 6) = 3.

Example 4.2. Suppose p is a prime number, and x ∈ Z/pZ satisfies x2 = 1. Then (x +
1)(x − 1) = 0, so x + 1 = 0 or x − 1 = 0. In other words, x = 1 or x = p − 1. Translation
into Z: if a is an integer such that a2 ≡ 1 mod p, then either a ≡ 1 mod p or a ≡ −1 mod p.

Similarly, if x ∈ Z/pZ satisfies xn = 0 for some positive integer n, then x = 0. Indeed,
xn = x(xn−1), so either x = 0 or xn−1 = 0. If the former is true, then we are done; if the
latter is true, then either x or xn−2 is 0, etc. Translation into Z: if a is an integer such that
p|an, then p|a (compare this to Proposition 3.1).

Example 4.3. As another application, suppose we have a congruence ax ≡ b mod m, and
we would like to find all possible integers x that make this congruence true. Suppose for
simplicity that (a,m) = 1 (the case when (a,m) 6= 1 is more annoying and is better dealt
with using gcd conditions or the Chinese remainder theorem, the latter of which we will
discuss later). Then if c is an integer that is an inverse to a mod m (so c is unique up to
congruence mod m), we have ax ≡ b mod m if and only if x ≡ bc mod m, which solves the
congruence. For instance, we would like to solve

3x ≡ 4 mod 16.

We have (3, 16) = 1, and indeed 3 · (−5) + 16 · 1 = 1. Therefore −5 is an inverse to 3 mod
16, so the solutions to the above congruence are any integer x congruent to (−5) · 4 = −20
mod 16. Or, if one prefers to take the canonical residue class mod 16 instead, then because
−20 ≡ 12 mod 16 and 12 ∈ [0, 15], we can say that the solutions are exactly of the form 12
mod 16.

Let’s now specialize to the case when m is a prime p, so every nonzero element in Z/pZ
has a multiplicative inverse. Consider some nonzero x ∈ Z/pZ, and consider the elements
1 = x0, x, x2, x3, . . . , xp−1. There are p of these elements, and none of them are 0 as discussed
in Example 4.2, so they must be elements in {1, 2, . . . , p− 1}. Therefore two of them must
be the same by cardinality considerations, so suppose xk = xl with 0 ≤ k < l ≤ p− 1. Then
multiplying by x−k = (xk)−1 on both sides, we get 1 = xl−k with 1 ≤ l − k ≤ p − 1. The
conclusion is that:

Theorem 4.1. For every nonzero x ∈ Z/pZ, there is a positive integer 1 ≤ d ≤ p− 1 such
that xd = 1.

Of course, the exponent d in question may depend on x. Therefore it is natural to ask if
there is a common exponent d, 1 ≤ d ≤ p− 1, such that xd = 1 for every nonzero x ∈ Z/pZ.
The answer is yes:
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Theorem 4.2 (Fermat’s little theorem). Let p be a prime and x ∈ Z/pZ be nonzero. Then
xp−1 = 1. Translation to Z: if a ∈ Z is coprime to p, then ap−1 ≡ 1 mod p.

Proof. There are many ways to prove this theorem. The most basic proof comes from a
“necklace-counting argument,” while the most abstract proof is to deduce it as a corollary
of Lagrange’s theorem from group theory. However, all of these proofs really share the same
core idea. So we will provide a proof that mimics the most abstract proof, but stays within
the realm of modular arithmetic in Z/pZ.

Consider the list x, 2x, . . . , (p − 1)x of elements of Z/pZ, where the multiplication is
really ×p. We do not yet call this a set, because we have not yet proven that there are no
repeated elements in this list. First, because x 6= 0, none of the elements we wrote down are
0, by the zero-product property of Z/pZ (Theorem 4.2). Next, suppose ax = bx for some
a, b ∈ Z/pZ. Then because x 6= 0, it is invertible, so multiplying both sides by x−1 produces
the equality a = b. In other words, if a, b ∈ Z/pZ are distinct, then ax 6= bx. Therefore the
elements x, 2x, . . . , (p− 1)x are all distinct, because the “coefficients” appearing in front of
x, i.e. 1, 2, . . . , p− 1, are distinct elements in Z/pZ (formally, what we’ve done is construct
a map from [p− 1] to {x, 2x, . . . , (p− 1)x}, and shown that it is injective).

Therefore {x, 2x, . . . , (p−1)x} is a subset of p−1 distinct elements of Z/pZ, none of which
are 0. Hence it is a subset of Z/pZ− {0} = {1, 2, . . . , p− 1}. But this subset only contains
p − 1 elements, so we conclude that {x, 2x, . . . , (p − 1)x} (which has p − 1 elements) and
{1, 2, . . . , p− 1} (which also has p− 1 elements) are the same! In other words, the elements
x, 2x, . . . , (p− 1)x of Z/pZ are simply a rearrangement of the elements 1, 2, . . . , (p− 1).

Let’s now multiply all the numbers in both sets, with multiplication done in Z/pZ. Since
they are the exact same list of numbers (with no repetitions in either list!),2 and the order
in which we multiply doesn’t affect the final result, we have

1 · 2 · . . . · (p− 1) = x · 2x · . . . · (p− 1)x = xp−1 · (1 · 2 · . . . · (p− 1)).

Write t for 1·2·. . .·(p−1). Because none of the factors in t are 0, by the zero-product property,
t is nonzero in Z/pZ. Therefore t is invertible, and we have t = xp−1t⇒ 1 = xp−1.

Corollary 4.3. If x ∈ Z/pZ, then xp = x.

Proof. If x is nonzero, this follows from the equality xp−1 = 1. If x is 0, then xp = 0 = x.

Corollary 4.4. If x ∈ Z/pZ is nonzero, then xp−2 = x−1.

2We are very careful to emphasize this point about no repetitions, because things can go wrong if we’re
sloppy about it. For instance, {1, 2, 2} and {1, 2} are the same as sets of integers, because sets disregard
repetition, but if we multiply the integers in the first list, we get 4, while if we multiply the numbers in the
second list, we get 2. Of course, the issue was that when we listed out the elements of our sets, we did not
insist that those lists did not contain repetitions.



4.1 The multiplicative structure

Math 55
Number Theory Handout

Page: 19

Remark 4.1. The converse of this theorem is not true: if n ≥ 2 is an integer, and
an−1 ≡ 1 mod n for all integers a coprime to n, it does not imply that n is prime. Such
“pseudoprimes” are called Carmichael numbers, and the smallest one is 561 = 3 · 11 · 17.
After we discuss the Chinese remainder theorem, we will see that this property is due to the
coincidence that 560 = 561−1 is divisible by each of 2 = 3−1, 10 = 11−1, and 16 = 17−1.

Here are some applications of Fermat’s little theorem:

Example 4.4. We will find the unique integer 0 ≤ a ≤ 10 such that 3333 ≡ a mod 11. By
Fermat’s little theorem, we know that 310 ≡ 1 mod 11, so 3330 = (310)33 ≡ 133 = 1 mod 11.
Therefore 3333 = 3330 · 33 ≡ 33 ≡ 5 mod 11.

Example 4.5. We claim that n5/5 + n3/3 + 7n/15 is an integer, whenever n is an integer.
A clever rearrangement of the expression gives

n5

5
+
n3

3
+

7n

15
=
n5 − n

5
+
n3 − n

3
+ n.

By Corollary 4.3, n5−n is 0 mod 5 for any integer n, and likewise n3−n is 0 mod 3 for any
integer n. Therefore the right-hand side of the above equality is an integer for any integer
n.

Notice that during the course of the proof of Theorem 4.2, we needed the fact that (p−1)!
is an integer coprime to p, but it was not necessary to actually find the reduction of (p− 1)!
mod p. But this is not too hard:

Theorem 4.3 (Wilson). If p is a prime number, then (p − 1)! ≡ −1 mod p. If m > 1 is a
composite number, then (m− 1)! 6≡ 1 mod m.

Therefore this theorem gives a (very, very, very slow) test to determine whether a given
positive integer is prime.

Proof. The result for prime p can be immediately verified when p = 2 or p = 3. So now
assume p ≥ 5, and p − 2 ≥ 3. We first claim that there is no integer x in {2, 3, . . . , p − 2}
such that x is congruent to x−1 mod p. Indeed, such an x would satisfy x2 ≡ 1 mod p, and
we saw in Example 4.2 that any such integer is congruent to 1 or p − 1 mod p, and none
of the integers in {2, 3, . . . , p − 2} are congruent to 1 or p − 1 mod p. Therefore we may
pair up the integers in {2, 3, . . . , p − 2} into (p − 3)/2 different pairs (a, a′), where a < a′

and aa′ ≡ 1 mod p (so we consider (a, a′) and (a′, a) to be the same pair). This is possible
because none of those integers are their own inverses mod p, and none of them have inverse
1 or p− 1 (as those are their own inverses). Therefore the product

2 · 3 · . . . · (p− 2)
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can be rearranged into a product as follows: for each of the aforementioned (p− 3)/2 pairs
(a, a′), we multiply a′ immediately after a in the product, so that a and a′ will “cancel mod
p.” Somewhat more formally,

2 · 3 · . . . · (p− 2) =
∏

(a,a′):2≤a<a′≤p−2,aa′≡1 mod p

aa′ ≡
∏

(a,a′):2≤a<a′≤p−2,aa′≡1 mod p

1 = 1 mod p.

Therefore

(p− 1)! = 1 · (2 · 3 · . . . · (p− 2)) · (p− 1) ≡ 1 · 1 · (p− 1) ≡ −1 mod p.

We now deal with the case when m is composite. By definition, m is divisible by some
integer a such that 1 < a < m. Then the factorial (m − 1)! will contain a factor of a, so
a|(m− 1)!. Therefore a > 1 is a common divisor of (m− 1)! and m, and so (m− 1)! cannot
be congruent to −1 mod m, because that would imply that gcd((m− 1)!,m) = 1.

Exercise 4.1. As an exercise, you can show that if m is composite, then (m−1)! ≡ 0 mod m,
unless m = 4 = 22 (in which case 3! = 6 ≡ 2 mod 4). [Hint: consider the prime factorization
of m, and show that unless m = 22, then there are two distinct integers a, b in {1, 2, . . . ,m−1}
whose product is divisible by m.]

As an example, let’s see the method of the proof of Wilson’s theorem in action when
p = 7. The integers {2, 3, 4, 5} can be paired up according to multiplicative inverses: the
pairs are (2, 4) and (3, 5) as 2 · 4 = 3 · 5 ≡ 1 mod 7. Then

6! = 1 · 2 · 3 · 4 · 5 · 6 = 1 · (2 · 4) · (3 · 5) · 6 ≡ 1 · 1 · 1 · (−1) ≡ −1 mod 7.

Remark 4.2. On the homework, you will encounter the Euler totient function ϕ, where
ϕ(n) for a positive integer n is the number of positive integers 1 ≤ m ≤ n such that
(m,n) = 1. Then the method we used to prove Theorem 4.2 can be used to prove the
following generalization of Fermat’s little theorem, called Euler’s theorem:

Theorem 4.4 (Euler). Let n > 1 be an integer, and a an integer such that (a, n) = 1. Then
aϕ(n) ≡ 1 mod n.

Indeed, if n is prime, then ϕ(n) = n− 1 (why?), which recovers Fermat’s little theorem.

The final theorem regarding the internal (multiplicative) structure of Z/mZ is motivated
by analogy with the additive structure of the integers. Observe that the integer 1 is a
“generator” of the integers, in the following sense: every integer k is equal to 1 added to
itself k times, where if k < 0, we interpret this as adding the additive inverse −1 to itself k
times. We can notice something similar occurring in the invertible elements of Z/mZ when
m is prime (so the invertible elements are the nonzero ones). For example:
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� In Z/3Z, every nonzero element is a power of 2, since 21 = 2 and 22 = 1.

� In Z/5Z, every nonzero element is a power of 2, since 21 = 2, 22 = 4, 23 = 3, and
24 = 1.

� In Z/7Z, every nonzero element is a power of 3, since 31 = 3, 32 = 2, 33 = 6, 34 =
4, 35 = 5, 36 = 1.

However, if m is not prime, this can fail. For instance, the invertible elements of Z/8Z are
{1, 3, 5, 7}. But all of them square to 1, so there is no invertible element a ∈ Z/8Z such that
every invertible element of Z/8Z is a power of a.

We give such a “generating element” a name:

Definition 4.2. Suppose a is an invertible element of Z/mZ such that if b is some invertible
element Z/mZ, then b = ak for some positive integer k. Then we call a a primitive root
(mod m).

Here is the key fact:

Theorem 4.5. If p is a prime, then Z/pZ has a primitive root. In other words, there is a
single nonzero element in Z/pZ that generates all other nonzero elements through its powers.

We will not prove this theorem, since our current setup for Z/pZ is slightly clunky, and
the proof is stated much more easily in the language of abstract algebra.3 However, on the
HW, you will look at some consequences of Theorem 4.5, and you will also see some ideas
used in its proof.

4.2 Chinese remainder theorem

In Example 4.3, we found that we were able to solve a single congruence ax ≡ b mod m, as
long as certain conditions are met (i.e. a is coprime to m). We now look at the problem
of satisfying multiple congruences simultaneously. Let’s restrict ourselves to the simplest
possible case: that of a system of congruences

x ≡ a1 mod m1, x ≡ a2 mod m2, . . . , x ≡ an mod mn (1)

for integers m1, . . . ,mn > 1. We would like to find all possible x that satisfy these congru-
ences simultaneously. As an initial observation, notice that if x satisfies (1), and if m is the
product of all the mi, then x+km also satisfies (1) for any integer k. Therefore one solution
x gives rise to an infinite set of solutions: all integers equivalent to x mod m.

3For instance, in an abstract algebra class, we would be able to discuss all of these ideas in the general
context of cyclic groups.



4.2 Chinese remainder theorem

Math 55
Number Theory Handout

Page: 22

Certainly not all possible congruence systems have solutions. For instance, the system

x ≡ 1 mod 2, x ≡ 2 mod 4

has no solutions, because the first congruence implies x would have to be odd, while the
second implies x would have to be even: an obvious contradiction. For the same reason, the
system

x ≡ 2 mod 6, x ≡ 3 mod 9

cannot be solved (think about divisibility conditions at 3).
If we look at more examples of this form, we see that a problem might arise when our

mi have common prime factors. In that case, the conditions x ≡ ai mod mi might “clash”,
as we saw in the example with x ≡ 1 mod 2, x ≡ 2 mod 4: 2 is a common divisor of 2 and
4, and indeed there was a contradiction arising from divisibility conditions at 2. So suppose
we stipulate that the mi are pairwise coprime, and perhaps we expect that the system (1)
has some solution x, no matter what the ai’s are. For instance, the system

x ≡ 1 mod 5, x ≡ 2 mod 6

has a solution x = 26, and hence any integer equivalent to 26 mod 30 is also a solution.
Our guess turns out to be true: it is the content of the Chinese remainder theorem.

Theorem 4.6 (Chinese remainder theorem). Let m1, . . . ,mn be pairwise coprime integers
greater than 1, and let m be their product. Let a1, . . . , an be arbitrary integers. Then the
system of congruences

x ≡ a1 mod m1, x ≡ a2 mod m2, . . . , xn ≡ an mod mn

has a unique solution mod m. In other words, there is a solution x in [0,m − 1], and any
other solution x′ is congruent to x mod m.

Proof. The idea is as follows: we want to build x as an integral linear combination

x = a1b1 + . . .+ anbn, (2)

where for a given 1 ≤ i ≤ n, bi ≡ 1 mod mi and bi ≡ 0 mod mj for all j 6= i (so far we haven’t
shown that bi satisfying these properties exist: this is just wishful thinking as of now). If
you’ve taken linear algebra, this idea may make a bit more sense: the bi act as “standard
basis vectors for modular arithmetic” in a sense (and this idea is not far off: if we had the
language of groups, we would see that this description is exactly what we are doing!). Then
given this x, for any 1 ≤ i ≤ n, we have

x ≡ ai · 1 = ai mod mi,
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since all the other bj are 0 mod mi, so those terms ajbj vanish mod m.
It remains to produce these bi. Recall that m is the product of the mi. Let ti be the

quotient mi/m, so ti is the product of all the mj except mi. Since the mi are pairwise
coprime, Proposition 1.3 shows that (mi, ti) = 1 for all i. Therefore ti is invertible mod mi,
so find yi such that yiti ≡ 1 mod mi.

We claim that if we set bi = yiti for each i, then we have the desired properties of the bi.
Since mj|ti for all j 6= i by construction, we have bi = yiti ≡ 0 mod mj for all j 6= i. The
remaining property, bi ≡ 1 mod mi, is true by definition of ti! So we have constructed the
desired bi, and x as in (2) solves the congruences simultaneously.

It remains to show uniqueness of x mod m. Suppose x′ is another solution to the same
system of congruences, so x − x′ ≡ 0 mod mi for each i. In other words, mi divides x − x′
for each i, and we aim to show that m divides x− x′. Since m is the product of the pairwise
coprime mi, we are done once we prove the following Lemma 4.1.

Lemma 4.1. Let c, d be relatively prime integers. If k is an integer with c|k and d|k, then
cd|k. By induction, if c1, . . . , cn are pairwise relatively prime integers and k is divisible by
each ci, then k is divisible by their product.

Proof. Let d′ be such that d′d = k. Then as c|k, we have cd|kd and thus cd|d′d2. Hence
c|d′d2. But c and d are coprime, so c and d2 are as well (Proposition 1.3), so by Euclid’s
Lemma (Proposition 1.4), c|d′. Hence cd|d′d⇒ cd|k.

Let’s end with some numerical applications of the Chinese remainder theorem.

Example 4.6. Suppose we want to solve the system

x ≡ 4 mod 6, x ≡ 11 mod 35.

The integers 6 and 35 are coprime, and we have 6 · 6 + 35 · (−1) = 1. Via this equation,
we see that 6 is an inverse of 6 mod 35, and −1 is an inverse of 35 mod 6. So the proof of
Theorem 4.6 shows that

x = 4(−1 · 35) + 11 · (6 · 6) = 256

solves the given congruences. Moreover, by the uniqueness statement of the Chinese re-
mainder theorem, the solutions to the system are precisely the integers equivalent to 256 ≡
46 mod 210, where 210 = 6 · 35.

Example 4.7. Here is the Chinese mathematician Sunzi’s original problem, which lends
Theorem 4.6 its name: there are certain things whose number is unknown. If we count them
by threes, we have two left over; by fives, we have three left over; and by sevens, two are left
over. How many things are there?

The question is equivalent to solving the system of congruences

x ≡ 2 mod 3, x ≡ 3 mod 5, x ≡ 2 mod 7.
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With notation as in the proof of Theorem 4.6, set m1 = 3, m2 = 5, and m3 = 7, so
m = 105. Then t1 = m2m3 = 35, t2 = m1m3 = 21, and t3 = m1m2 = 15. A straightforward
computation shows that y1 = 2, y2 = 1, and y3 = 1 are inverses of t1, t2, t3 mod m1,m2,m3

respectively. Therefore

x = 2t1y1 + 3t2y2 + 2t3y3 = 2 · 2 · 35 + 3 · 1 · 21 + 2 · 1 · 15 = 233

solves the system of congruences. Since 233 ≡ 23 mod 105, and every solution to the system
is congruent to 233 mod 105, we conclude that 23 is the smallest positive integer solution to
the question.

Here is one more example, combining the Chinese remainder theorem with Fermat’s little
theorem:

Example 4.8. In Remark 4.1, we noted that if n ≥ 2 is an integer (not necessarily prime),
and an−1 ≡ 1 mod n for all integers a coprime to n, then this does not imply that n is prime
(i.e. any possible formulation of a converse to Fermat’s little theorem is false). Composite
integers n satisfying this annoying property are called Carmichael numbers, and we claimed
that 561 is such a Carmichael number. We now have the tools to demonstrate this.

Note that 561 = 3 · 11 · 17. Suppose (a, 561) = 1, so in particular a is not equivalent to
0 mod 3, 11, or 17. So by Fermat’s little theorem, we have a2 ≡ 1 mod 3, a10 ≡ 1 mod 11,
and a16 ≡ 1 mod 17. Since 560 is divisible by each of 2, 10, and 16, we conclude that
a560 ≡ 1 mod m for each of m = 3, 11, 17. But 1 is another integer satisfying the same
system of congruences! So by the uniqueness statement of the Chinese remainder theorem,
we conclude that a560 is congruent to 1 mod 561, as 3 · 11 · 17 = 561.

The same tools—Fermat’s little theorem and the Chinese remainder theorem—can be
used to prove Korselt’s criterion: a composite integer n > 2 is a Carmichael number if and
only if the following two conditions hold:

(i) n is squarefree (i.e. n is not divisible by any perfect square other than 1).

(ii) For every prime p dividing n, we also have (p− 1)|(n− 1).

In fact, our example with n = 561 actually supplies most of the ideas needed in this proof,
although some slight generalizations of Fermat’s little theorem are needed.

We have only touched the surface of the Chinese remainder theorem (there are many
generalizations of this fact, including geometric interpretations!). Indeed, we have only
scratched the surface of what number theory has to offer, and I’m always happy to discuss
the mathematics that can pop out of even the most innocuous number-theoretic questions.

https://kconrad.math.uconn.edu/blurbs/ugradnumthy/carmichaelkorselt.pdf
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